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Abstract
We present a new approach to the study of the function of atomic inversion in
the model of interaction of a single two-level atom with a single mode of the
quantized electromagnetic field in the coherent state in an ideal resonator. The
approach suggested is based on an application of certain number-theoretic
results to the approximation of the trigonometric sums of a special form,
in particular of the functional equation of the Jacobi theta function. New
asymptotic formulae for the atomic inversion are found. The asymptotics that
we obtain make it possible to predetermine the details of the behavior of the
inversion on various time intervals depending on the parameters of the system.

PACS numbers: 42.50.Ar, 42.50.Dv, 42.50.Md

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Statement of the problem

The Jaynes–Cummings model (JCM) [6] describes a single two-level atom interacting with a
single mode of the quantized electromagnetic field in an ideal resonator [1–5, 15–21]; see also
[8, 14]. The great advantage of the JCM is that it is an exactly solvable and at the same time
an adequate model. At present, the JCM occupies a special place in quantum optics because it
helps to examine and verify the conjectures about more complicated models which are close
to real processes.

To study the evolution in time of the atom–field system in the JCM, one often uses such
an experimentally observed value as atomic inversion (the difference between the population
in the excited state and the ground state of the atom). Let the atom be in its excited state at
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t = 0 and the radiation field be in a coherent state with the Poissonian photon statistics. Then
the atomic inversion W = W(t) at a time t > 0 is defined by the following formula ([18]; see
also [17]):

W(t) =
+∞∑
n=0

|α|2ne−|α|2

n!

(
�2

�2
n

+
4g2(n + 1)

�2
n

cos (�nt)

)
, (1)

where �n =
√

�2 + 4g2(n + 1) is the Rabi frequency, � is the detuning parameter, that is, the
difference between the frequency of the atomic transition and the frequency of the field in the
resonator, � � 0, g is the interaction strength between the atom and the radiation and g > 0.

Here, α is in general a complex parameter and |α|2 is the initial average number of photons
before the interaction of the field with the atom.

The sum (1) is rather complicated for studying the characteristics of the process of
inversion and for its evaluation. For this reason, one takes a function, which approximates (1)
well enough, and considers it as the inversion.

A similar problem was considered in [17], where the sum (1) is replaced by one integral
(without estimating the remainder term), which is then calculated by the saddle point method,
and also in [5] (see also [2]), where the sum of form (1) with � = 0 is replaced by the Poisson
formula by an infinite sum of integrals, which are then calculated by the saddle point method.

In this paper, to approximate the sum (1), a new method is suggested, which is based on the
techniques used in number theory. To get an asymptotic approximation of inversion (1) which
is as precise as possible, we investigate the series (1) and approximate it by various functions.
In this way, we establish relations between the parameters of the system guaranteeing the
appropriateness of the asymptotics obtained. In [8], this problem was solved for the case
� = 0. We use certain results obtained in [8]. At the same time, when � �= 0, quite new
effects are detected in the behavior of the atomic inversion, which are discussed in this paper.

1.2. Introducing new parameters

Since
+∞∑
n=0

|α|2ne−|α|2

n!
= 1,

then W(0) = 1 and |W(t)| � W(0) = 1.
We set

A =
+∞∑
n=0

|α|2ne−|α|2

n!

�2

�2 + 4g2(n + 1)
,

W1(t) =
+∞∑
n=0

|α|2ne−|α|2

n!

4g2(n + 1)

�2 + 4g2(n + 1)
cos (�nt),

so that W(t) = A + W1(t). We introduce the following new notation:

a = �2

4g2
, T = 2gt.

We emphasize that new parameters a and T are dimensionless. Thus, we will measure
time in units of 1

2g
(note that dimensionless time is used in many works; in addition, in [17]

time is measured in units π
g

and in [1, 18] it is measured in units 1
g

). Sometimes dimensionless
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time is called [1] the ‘scaled time’. By analogy, in what follows, we shall call parameter a the
quadratic ‘scaled detuning parameter’. With new parameters, we obtain

�n = 2g
√

a + 1 + n.

W1(t) = U1(T ) = e−|α|2
+∞∑
n=0

|α|2n

n!

1

1 + a
n+1

cos (T
√

a + 1 + n), (2)

A =
+∞∑
n=0

|α|2n

n!
e−|α|2 a

a + n + 1
, (3)

W(t) = U(T ) = U1(T ) + A. (4)

The value A does not depend on t and will be calculated below with good accuracy. We note
that

A = 1 − W1(0). (5)

Let us denote

m1 = |α|2.
In what follows, as in [8], to simplify the calculations for estimating, we shall assume that our
main increasing parameter m1 satisfies the condition

m1 � 100, m1 is an integer. (6)

1.3. Sketched plan of this paper and certain definitions

We will study the behavior of function W1(t). With the help of the transformations of the
summands of the series (2), we will approximate U1(T ) on the interval of variation of T, which
is of the form

0 � T � (m1 + a + 1)
5
6 , (7)

by the well-known [11] Jacobi theta series (see also [8]). After that, by applying the functional
equation, which is satisfied by this series, we will see that U1(T ) is approximated with good
accuracy by a sufficiently simple function. So the properties of this function will determine
the behavior of U1(T ) on the indicated interval of variation of T .

We note that the constants in the obtained asymptotic equalities can be replaced by smaller
ones if more precise calculations are made. However, we do not present such calculations
here because they are very awkward. At the same time, the meaning of these constants is a
secondary one. We calculate them mostly to show that the derived asymptotic formulae are
effective ones. In reality, the accuracy of the formulae, which we developed, can be much
better than what is established in our statements. This can make it possible to extend the
limits of the availability of the obtained asymptotics defined by (7). The proximity of certain
characteristics of the plots of two approximations: of the principal term of the asymptotics
obtained and of the direct sum of a great total number of summands of the series (2), on
the time intervals which are essentially longer than (7), indicates the possibility of such an
extension for certain values of parameters. We will demonstrate it in subsection 4.2.

Below, we use the following notation:
θ, θ1, θ2, . . .—functions whose modulus does not exceed 1; note that in different formulae,

they are, generally speaking, different.
For real x, the function y = {x} is the fractional part of the number x, that is,

y = {x} = x − [x], where [x] is the integral part of x, that is, an integer such that

3
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[x] � x < [x] + 1; the function y = ‖x‖ = min({x}, 1 − {x}) is the distance from x to
the nearest integer.

We note that, for any x, 0 � {x} < 1, 0 � ‖x‖ � 1
2 .

2. The proof of the main asymptotics for inversion

2.1. Gaussian approximation to Poisson statistics

The formulae presented below are similar to the formulae proved in [8]. Applying the Stirling
formula to n!, we prove that

U1(T ) = 1√
2πm1

(
1 − θ

12m1

)
F1(T ), (8)

where

F1(T ) =
∞∑

m=0

r(m)
1

1 + a
m+1

cos (T
√

a + 1 + m), (9)

r(m) =

⎧⎪⎪⎨
⎪⎪⎩

(m+1)···(m1−1)

m
m1−m−1
1

, if m < m1

1, if m = m1

m
m−m1
1

(m1+1)···m, if m > m1.

The infinite series (9) is approximated with good accuracy by a finite sum. The accuracy of
the approximation increases when the total number of summands of the approximating sum
grows. We shall denote this total number of summands by 2ν1 + 1 and assume that ν1 is an
arbitrary integer from the interval

1 < ν1 � 1
2m1

(later on, we shall define ν1 precisely). Then for F1(T ), the following formula is valid:

F1(T ) = F2(T ) + 4θ
m1

ν1

(
1 +

a

m1

)−1

exp

(
− ν2

1

4m1

)
, (10)

where

F2(T ) =
∑

−ν1�ν�ν1

r(m1 + ν)

(
1 +

a

m1 + ν + 1

)−1

cos (T
√

m1 + a + 1 + ν). (11)

From (10) we see that if ν1 is any number with the condition

ν1 � 2C
√

m1 ln m1, C = const > 0,

then the remainder in (10) is less in absolute value than

4
m1

ν1

(
1 +

a

m1

)−1

m−C2

1 ,

that is, F1(T ) is ‘very well’ approximated by the sum F2(T ), with the number of summands
of order

√
m1 ln m1.

The next step of our transformations is to approximate the coefficients of the function
r(m1 + ν), |ν| � ν1, by the exponential function. It is proved that if

1 < ν1 � 3

√
1
2m2

1, (12)

4
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then we obtain by applying the Euler summation formula to r(m) from (9) (see [8][lemma 6])
that for |ν| � ν1, the following asymptotic formula is valid:

r(m1 + ν) = exp

(
− ν2

2m1

)(
1 + θ1|ν|3m−2

1 + θ2|ν|m−1
1

)
. (13)

From (11) and (13) with condition (12), we get

F2(T ) =
∑

−ν1�ν�ν1

exp

(
− ν2

2m1

)(
1 +

a

m1 + ν + 1

)−1

cos
(
T

√
m1 + a + 1 + ν

)

+ 6θ3

(
1 +

a

m1

)−1

. (14)

The coefficient
(
1 + a

m1+ν+1

)−1
in (14) for |ν| � ν1 is ‘a little’ different from the number(

1 + a
m1+1

)−1
, which does not depend on ν. Using this consideration, we get after simple

calculations

F2(T ) =
(

1 +
a

m1 + 1

)−1 ∑
−ν1�ν�ν1

exp

(
− ν2

2m1

)
cos

(
T

√
m1 + a + 1 + ν

)

+ 10θ4

(
1 +

a

m1

)−1

. (15)

2.2. Quadratic approximation to the cosine argument

Now we substitute the argument of the cosine by the quadratic polynomial in ν and estimate
the error of such a substitution. Now set

m2 = m1 + a + 1, β0 = T
√

m2, β1 = T

2
√

m2
, β2 = T

8
√

m3
2

.

Using the Taylor and the Lagrange formulae, we obtain consecutively

T
√

m1 + a + 1 + ν = T
√

m2 + ν = β0 + β1ν − β2ν
2 + 1

8θ3T |ν|3m− 5
2

2 ,

cos
(
T

√
m2 + ν

) − cos (β0 + β1ν − β2ν
2) = 1

8θ4T |ν|3m− 5
2

2 .

(16)

Substituting (16) into (15) and using the estimate

∑
−ν1�ν�ν1

|ν|3 exp

(
− ν2

2m1

)
� 2

∫ ∞

0
x3e− x2

2m1 dx = 4m2
1,

we get for F2(T )

F2(T ) =
(

1 +
a

m1 + 1

)−1(
F3(T ) +

1

2
θ1T m2

1m
− 5

2
2 + 10θ2

)
, (17)

where

F3(T ) =
∑

−ν1�ν�ν1

exp

(
− ν2

2m1

)
cos (β0 + β1ν − β2ν

2). (18)

5
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2.3. Approximation of the finite sum by the Jacobi theta function

From (18), one can see that F3(T ) is a ‘principal part’ of the theta series F4(T ):

F3(T ) = F4(T ) + 10θ1
m1

ν1
exp

(
− ν2

1

2m1

)
, (19)

where

F4(T ) =
+∞∑

ν=−∞
exp

(
− ν2

2m1

)
cos (β2ν

2 − β1ν − β0).

Note that the greater the T, the worse the remainder term in (17). This is because we
approximate the argument of the cosine by a polynomial of the second degree. For the
remainder term to be ‘good’ also for ‘great’ T, one should approximate the argument of the
cosine by a polynomial of degree n > 2, but F3(T ), obtained in this way will be not a part of
a theta series, and it is not known how to sum it up.

2.4. Apply the resummation formula

Now we apply a functional equation to the theta function F4(T ), which it is also possible to
write in the following way:

F4(T ) = Re
+∞∑

ν=−∞
exp

(
− ν2

2m1

)
exp(i(β2ν

2 − β1ν − β0)).

The functional equation of an arbitrary 	-function is as follows: if Re(τ ) > 0, and

	(τ, ρ) =
+∞∑

n=−∞
exp(−πτ(n + ρ)2),

then

	

(
1

τ
, ρ

)
= √

τ

+∞∑
n=−∞

exp(−πτn2 + 2π iρn).

Taking the numbers τ and ρ from the equalities

−πτ = − 1

2m1
+ iβ2, 2π iρ = −iβ1,

after simple calculations we obtain for F4(T ) the formula

F4(T ) = T
− 1

4
2

+∞∑
n=−∞

exp

(
− 1

2m1T2

(
n − β1

2π

)2)
cos

(
β2

T2

(
n − β1

2π

)2

+
ϕ1

2
− β0

)
, (20)

where

T2 = 1

4π2m2
1

+
β2

2

π2
= 1

4π2m2
1

+
T 2

64π2m3
2

,

ϕ1 = arctan
T m1

4
√

m3
2

= π

2
− arctan

4
√

m3
2

T m1
.

(21)

6
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Setting now in (19) ν1 = [ 3
√

m2
1

/
2
]

and combining formulae (7), (10), (17), (19) and (20), we
obtain for U1(T ) the following asymptotic formula:

U1(T ) = 1√
2πm1

(
1 − θ

12m1

)(
1 +

a

m1 + 1

)−1
(

T
− 1

4
2

+∞∑
n=−∞

exp

(
− 1

2m1T2

(
n − β1

2π

)2)

× cos

(
β2

T2

(
n − β1

2π

)2

+
ϕ1

2
− β0

)
+ θ1T m2

1m
− 5

2
2 + 10θ2

)
. (22)

Analyzing (22) we see that the principal term in it is the term which is obtained with the
integer n = n1 that is closest to the number β1

2π
.

Now assume that T satisfies condition (7) and besides

γ =
∥∥∥∥ β1

2π

∥∥∥∥ =
∥∥∥∥ T

4π
√

m2

∥∥∥∥, (23)

D = 1

2m1T2
= 1

2m1

(
1

4π2m2
1

+
β2

2

π2

)−1

. (24)

Then for U1(T ), the following formula is valid:

U1(T ) = 1√
2πm1

(
1 − θ

12m1

)(
1 +

a

m1 + 1

)−1(
T

− 1
4

2 exp(−Dγ 2)

× cos

(
2m1β2Dγ 2 +

ϕ1

2
− β0

)
+ θ1

(
T m2

1m
− 5

2
2 + 12

))
. (25)

Formula (25) is obtained from (22); the principal term with n = n1 is isolated, where

n1 =
[

β1

2π

]
, if

{
β1

2π

}
� 1

2
,

n1 =
[

β1

2π

]
+ 1, if

{
β1

2π

}
>

1

2
,

and the sum of the remaining summands is estimated trivially as
+∞∑

n=−∞
n�=n1

exp

(
− 1

2m1T2

(
n − β1

2π

)2)
� 2

(
exp

(
−π2

4
m1

)
+ exp

(−4π2m
1
3
2

))
.

3. Discussion of the asymptotic behavior of the atomic inversion for various time
intervals

3.1. General remarks

We study the behavior of function U1(T ) when T varies from 0 to m
5
6
2 .

Traditionally, the behavior of the inversion is described as a sequence of collapses and
revivals of quantum oscillations. However, sometimes it is more convenient to consider a
packet of oscillations as a whole, with both the revival and the collapse (exclusion is the first
packet; it is of the collapsed oscillations only). Every packet has its own characteristics: the
maximal by absolute value oscillation, the time position of the maximal by absolute value
oscillation (‘the position of the peak of the packet’; it is also called the ‘time of revival’), the
time interval where the oscillations of the packet have a notable value, etc.

7
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Formula (25) will be appropriate (with a packet) when its principal term, that is, the
summand with the cosine, will take values much greater (by absolute value) than the remainder.
By assuming (later it will be proved rigorously) that on the studied interval of varying T, say,
for ϒ � T � ϒ + h the cosine takes all values from −1 to +1, let us see how the principal
term behaves in this case. It is not difficult to prove that for T from (7) and (21) the inequality

T
− 1

4
2 � T m2

1m
− 5

2
2 + 12

always holds and, besides, the number D from (24) is always ‘great’, namely

D � min
(
π2m1, 16π2m

1
3
2

)
.

For this reason, if in (25) the value of γ is ‘great’, then exp(−Dγ 2) is a ‘very small’ number
and the principal term is smaller than the remainder. More precisely, if

Dγ 2 � 2 ln m2,

then it is easy to get the inequality

T
− 1

4
2 exp(−Dγ 2) � T m2

1m
− 5

2
2 + 12.

That is why for (25) to be rich in content, it is necessary that γ should be ‘small’, namely that
the inequality

γ �
√

2 ln m2

D
(26)

should be valid.

3.2. Behavior of the asymptotics around revival time

From the definition of γ (see (23)), we conclude that the asymptotics (25) will be meaningful
if the numbers

T

4π
√

m2

are ‘close’ to integers. Since 0 � T � m
5
6
2 , then one needs to consider such T which are

‘close’ to the numbers of the form

T rk = k4π
√

m2; k = 0, 1, . . . , k1; k1 =
[
m

1
3
2

4π

]
. (27)

By analogy with the resonance case, we can call T rk , by which the position of the peak of the
packet of quantum oscillations is defined, ‘the time of the kth revival’.

3.3. The bounds for the first packet (the first collapse)

Now let us consider a part of interval (7), namely

0 � T � 2π
√

m2. (28)

Then

γ = T

4π
√

m2
.

For the nontriviality of (25), one needs the validity of inequality (26) or, in the case considered,
of the inequality

T �
√

32π2m2 ln m2

D
.

8
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On the other hand, on interval (28) for D the following estimate is valid:

D � 1

2m1

(
1

4π2m2
1

+
1

16m2
2

)−1

� m1

(
1

2π2
+

1

8

)−1

� 4m1.

Thus, for the nontriviality of formula (25) on interval (28), it is necessary that the following
inequality holds:

T �
√

8π2
m2

m1
ln m2. (29)

So, if 0 � T � 2π
√

m2, then only for T situated in the left end of this interval, namely for
T which are satisfied by (29), can the asymptotics (25) be rich in content. Note that for large
detuning, when a � 1,√

8π2
m2

m1
ln m2 � 1.

At the same time, if

2π
√

m2 � T >

√
8π2

m2

m1
ln m2,

then the principal term of (25) is less than the remainder and (25) gives only an upper bound
for U1(T ).

It is natural to ask the following question: for which T does the first summand of (25)
take values that are certainly greater by the absolute value than the remainder? It is easy to
find an answer to this question. Since for D the upper bound of the form D � 2π2m1 holds,
then for Dγ 2 � 1, that is, certainly for γ 2 � 1

2π2m1
, or for

0 � T � 2
√

2

√
m2

m1
, (30)

the estimate exp(−Dγ 2) � exp(−1) is valid. If the cosine takes all possible values from
−1 to +1 on interval (30), then the principal term in (25) will also take values much greater
by the absolute value than the remainder, that is, the asymptotics (25) will be useful. Let us
look at the argument of the cosine in (25), which is convenient from the cosine evenness to be
rewritten as

�(T ) = T
√

m2 − 1

2
arctan

T m1

4m
3
2
2

− T 3

128π2m
5
2
2

(
1

4π2m2
1

+
T 2

64π2m3
2

)−1

. (31)

On interval (30), the principal summand of (31) is the first summand. The sum of the other
two is less by the absolute value than 3

2
√

2

√
m1

m2
. That is why, for any h > 0, we find

�(T + h) − �(T ) = h
√

m2 + θ
3√
2

√
m1

m2
.

Consequently, �(T + h) − �(T ) > π, if

h >
π√
m2

+
3√
2

√
m1

m2

1

m2
= �.

We obtained that for 0 � T � 2
√

2
√

m2
m1

, at any interval of the form (T , T + �) the cosine

takes values from −1 to +1, and

1

�
2
√

2

√
m2

m1
≈ 2

√
2

π

m2√
m1

9
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such intervals there. Moreover, the factor by the cosine in (25),

T
− 1

4
2 exp(−Dγ 2) = exp(−Dγ 2)

(
1

4π2m2
1

+
T 2

64π2m3
2

)− 1
4

,

does not vary practically.
Summing up briefly the conclusions on the behavior of the function U1(T ) for 0 � T �

2π
√

m2, we note that only in the left end of this interval, that is, only for 0 � T � 2
√

2
√

m2
m1

,

does formula (25) give ‘certainly appropriate’ behavior of the function U1(T ): in this end of
the interval the ‘bracket’ from (25) takes ≈ 2

√
2

π
m2√
m1

values; each of them is approximately

equal to ±√
2πm1. When T increases from 2

√
2
√

m2
m1

to
√

8π2 m2
m1

ln m2, the values |U1(T )|
decrease sharply, and for the rest of the values of T up to 2π

√
m2 the asymptotics (25) will

give only the estimate of |U1(T )| by a small value.

3.4. Characteristics of a packet of oscillations

We now consider all intervals 0 � T � m
5
6
2 under investigation. We cover it by intervals of

the form

k4π
√

m2 − 2π
√

m2 � T � k4π
√

m2 + 2π
√

m2, k = 1, 2, . . . , k1 =
[

1

4π
m

1/3
2

]
.

Let T = k4π
√

m2 + x, |x| � 2π
√

m2. Then

γ =
∥∥∥∥ T

4π
√

m2

∥∥∥∥ = |x|
4π

√
m2

. (32)

We know that for the asymptotics (25) to be rich in content it is necessary that inequality (26)
is valid or, taking into account (32), the inequality

|x|
4π

√
m2

�
√

4m1 ln m2

(
1

4π2m2
1

+
T 2

64π2m3
2

)
(33)

holds. Increasing the right-hand side of inequality (33) by a little, namely substituting T by a
slightly greater value, not depending on x,

T � k4π
√

m2 + 2π
√

m2 = 4π
√

m2

(
k +

1

2

)
,

we obtain that only for |x| � ϒ1(k), where

ϒ1(k) =

√√√√64π2m1m2 ln m2

(
1

4π2m2
1

+

(
k + 1

2

)2

4m2
2

)
, (34)

can formula (25) be meaningful. It is easily seen from (34) that if m1 is ‘great enough’
(m2 > m1) and a is less than ≈ exp(m1), then

2π
√

m2 > ϒ1(k).

On the other hand, it is easy to check that for |x| � ϒ0(k), where

ϒ0(k) =

√√√√64π2m1m2

(
1

4π2m2
1

+

(
k − 1

2

)2

4m2
2

)
,

10
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T = 2gt

U
(T

)

•
 Tr

k
=k 4π√m

2

ϒ
0
(k)

ϒ
0
(k)

•

 k 4π√m
2

π√m
2

 k 4π√m
2
+2π√m

2
•

 Ar
k

 Ar
k

ϒ
1
(k)

ϒ
1
(k)

Figure 1. Scheme of the kth packet of oscillations: m2 = m1 + a + 1, a = (�/(2g))2,

m1 = |α|2, T rk = k4π
√

m2; Ark ≈
(

1
4π2m2

1
+ k2

4m2
2

)− 1
4
, ϒ0(k) =

(
64π2m1m2

(
1

4π2m2
1

+

(k− 1
2 )2

4m2
2

)) 1
2
, ϒ1(k) =

√
64π2m1m2 ln m2

(
1

4π2m2
1

+
(k+ 1

2 )2

4m2
2

)
.

the inequality Dγ 2 � 1 holds, that is, exp(−1) � exp(−Dγ 2) � 1. Moreover, for

T = 4πk
√

m2 + x, |x| � ϒ0(k) the factor
(

1
4π2m2

1
+ T 2

64π2m3
2

)− 1
4 differs a little from the number(

1
4π2m2

1
+ k2

4m2
2

)− 1
4 . It remains to understand the behavior of the argument of the cosine as a

function of x, |x| � ϒ0(k). To do so, we consider the following function:

f (x) = �(k4π
√

m2 + x) = x
√

m2 + (k4π
√

m2)
√

m2 − 1

2
arctan

(k4π
√

m2 + x)m1

4m
3
2
2

− (k4π
√

m2 + x)3

128π2m
5
2
2

(
1

4π2m2
1

+
(k4π

√
m2 + x)2

64π2m3
2

)−1

.

According to the Lagrange formula, we find

f (x + h) − f (x) = h
√

m2 + hr1, |r1| � m1

6m
3
2
2

.

Consequently on the interval −ϒ0(k) � x � ϒ0(k) the cosine will take values +1 and
−1 ≈ 2

π
ϒ0(k)

√
m2 times: ϒ0(k) defines the width of the time interval of ‘notable’ oscillations

of the kth collapse/revival. For ϒ0(k) � |x| � ϒ1(k), the principal term decreases when x
increases from the factor exp(−Dγ 2) (the cosine oscillations are continued): ϒ1(k) defines
the width of the time interval of the kth collapse/revival oscillation (2ϒ1(k) is the general
width of the packet). For ϒ1(k) � x � 2π

√
m2 the principal term becomes a small one,

and instead of the asymptotics we get only the estimate of |U1(T )|, which is given by the
remainder term.

An approximate scheme of the kth packet is presented in the plot in figure 1 (all the plots
of this paper are built with use of program Matlab 7).

11
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Note that the maximal value of the kth packet oscillations, which we will call the
‘amplitude’ of the kth revival, is equal to

Ark ≈
(

1

4π2m2
1

+
k2

4m2
2

)− 1
4

,

that is, it decreases when k increases.

4. Conclusion

4.1. Main asymptotic formula for the atomic inversion

The value A, defined by (3), is easily calculated from (5) and (8), (10), (15):

A = a

m1 + a + 1
+

14θ√
2πm1

(
1 +

a

m1

)−1

.

Thus, we finally get the following asymptotic formula for the atomic inversion:
for 0 � T � (m1 + a + 1)

5
6 ,

W(t) = U(T ) = a

m1 + a + 1
+

m1 + 1

m1 + a + 1

(
1 +

T 2m2
1

16(m1 + a + 1)3

)− 1
4

× exp

(
−2π2m1

(
1 +

T 2m2
1

16(m1 + a + 1)3

)−1(∥∥∥∥ T

4π
√

m1 + a + 1

∥∥∥∥
)2)

× cos

(
π2

2
T

m2
1√

(m1 + a + 1)3

(
1 +

T 2m2
1

16(m1 + a + 1)3

)−1(∥∥∥∥ T

4π
√

m1 + a + 1

∥∥∥∥
)2

− 1

2
arctan

T m1

4
√

m1 + a + 1
− T

√
m1 + a + 1

)

+ θ

(
2√

2πm1

(
1 +

a

m1

)−1(
T m

3
2
1 (m1 + a + 1)−

5
2 + 19

))
, (35)

where a = �2

4g2 , T = 2gt,m1 = |α|2. Above we showed that on the interval 0 � T �
(m1 +a +1)

5
6 approximately 1

4π
(m1 +a +1)

1
3 +1 packets of quantum oscillations appear, which

are localized on the intervals of the form

4π
√

m1 + a + 1
(
k − 1

2

)
� T � 4π

√
m1 + a + 1

(
k + 1

2

)
,

where k = 0, 1, 2, . . . , k1 and k1 = [
(m1+a+1)

1
3

4π

]
.

Moreover, the behavior of the packet of oscillations has a distinctly asymptotic character
on the intervals of the form

4π

(
k
√

m2 −
√(

m2

m1
+

m1

m2

(
k + 1

2

)2

π2

)
ln m2

)
� T

� 4π

(
k
√

m2 +

√(
m2

m1
+

m1

m2

(
k + 1

2

)2

π2

)
ln m2

)
,

12
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Figure 2. The principal term of the approximation of the inversion U(T ) for the average photon
number m1 = |α|2 = 1024; the time position of peaks is defined by T rk = k4π

√
a + 1025.

where m2 = m1 + a + 1, k = 0, 1, 2, . . . , k1 and k1 = [m
1
3
2

4π

]
, and the values that the packet

oscillations take are the highest by the absolute value on the subintervals of the form

4π

(
k
√

m2 −
√(

m2

m1
+

m1

m2

(
k − 1

2

)2

π2

))
� T

� 4π

(
k
√

m2 +

√(
m2

m1
+

m1

m2

(
k − 1

2

)2

π2

))
,

where m2 = m1 + a + 1, k = 0, 1, 2, . . . , k1 and k1 = [m
1
3
2

4π

]
.

4.2. The limits of the availability of the main asymptotics

Note that formula (35) can be an effective one and reflects correctly the essence of event also
for much smaller values of m1 than we assumed above according to condition (6), since all
estimates are much stronger than what we used above.

At the same time, since approximately 1
4π

(m1 + a + 1)
1
3 revivals appear in ‘the proved’

region (7), then in order to observe at least the first revival in this region, the sum of parameters
m1 + a must be more than ≈64π3 − 1. This confirms the plots presented in figures 2 and 3:
the first revival appears when a � 960 and when m1 � 1759 respectively (the plot in figure 3
is built for m1 beginning from m1 = 1600).

We see that for small values of m1 + a, we have proved the asymptotical formula for the
first packet (first collapse) only.

As was already mentioned in subsection 1.3 by making more precise bounds, it is possible
to extend the time limits of the availability of the proved formulae defined by (7), say up to
0 � T � C0(m1 + a + 1), where C0 is a constant. Then by verifying separately the groups
of certain values a and m1, it is possible to make more precise bounds for C0 (for small
parameters a and m1, C0 can be relatively great). The reason to assume such a possibility for
small values a + m1 is due to the numerical calculations presented in three pairs of plots in

13



J. Phys. A: Math. Theor. 42 (2009) 195304 A A Karatsuba and E A Karatsuba

Figure 3. The principal term of the approximation of the inversion U(T ) for the quadratic
‘scaled detuning parameter’ a = (�/(2g))2 = 225; the time position of peaks is defined by
T rk = k4π

√
m1 + 226.

Figure 4. Sum of the first 155 terms of the series (4) (red line) and the principal term of the
approximation (35) (blue line) of the inversion U(T ) for the average photon number m1 = |α|2 =
100 and the quadratic ‘scaled detuning parameter’ a = (�/(2g))2 with 1: a = 1, 2: a = 100,
3: a = 1000.

figure 4. It is easily seen that certain characteristics of the packets of quantum oscillations:
the positions of the packets, the positions of the peaks of the packets, maximal by absolute
value oscillation of a packet, coincide on the time intervals which are much longer than proved
by (7).

However, in this paper, we prove rigorously the accuracy of the approximation only on
the interval 0 � T � (m1 + a + 1)

5
6 . In a general case, if T > m1 + a + 1, then for a rigorous

proof one needs to apply the theorem on the approximation of a trigonometric sum by a shorter
one—ATS (see [7, 9–14]; see especially [8]). In this way, the function W(t) will be already
approximated by a sum of a few cosines, the number of which will increase with increasing
length of the interval of variation of T.
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4.3. The important role of the quadratic ‘scaled detuning parameter’

Since in all the above cases our estimates were uniform in m1 and m2 = m1 + a + 1, from the
formulae obtained one can see how the behavior of the atomic inversion depends on the value
of a, a = �2

4g2 .
If a is of order less than or equal to m1, that is, 0 � a � C1m1, where C1 � 0 is a

constant, then W(t) behaves (on the whole) in the same way as it would for a = 0, that is,

for � = 0. If a is greater than m1 by order, for example a = m1 ln m1 or a = m
3
2
1 , then the

behavior of W(t) will be essentially different from the resonance case; the number of local
extrema changes, the extremum values will be different and so on.

As can be seen in the plots in figure 4, with increasing a the axis of symmetry of the
graph tends to line y = U(T ) = 1, and the ‘amplitude of revivals’ decreases. When a
becomes greater than m1, all values of the inversion become positive (see also figure 2). Such
a change in the inversion behavior corresponds to the phenomenon of the ‘dispersive limit’
(see [2, 18, 19]), as a result of which the interaction of an atom with the nonresonant field
introduces a dispersive shift in the atomic states, which is not accompanied by transitions in
the system, that is, the number of photons in the system does not change in this case.

4.4. Concluding remarks. Quantum effects and number theory

Asymptotic formulae proved above reflect the peculiarities of the behavior of the inversion
observed in experiments: collapses and revivals of quantum oscillations are repeated, the
amplitude of the oscillations decreases with time and the duration of revivals increases.
Besides, the moments when the collapses and revivals take place, and their amounts on the
intervals under consideration, are determined by the relation between the parameters of the
system: the detuning parameter, the atom–field coupling constant and the initial average
number of photons before the interaction of the field with the atom.

The revivals in the JCM reflect the discrete structure of the photon distribution in this
model, which is a pure quantum mechanical phenomenon. The discreteness, expressed in the
Jaynes–Cummings sum for the atomic inversion, was the basis to apply to the approximation
of this sum the techniques which were developed in number theory, which is the field of
mathematics whose main objects of investigation are discrete objects (integers).
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